The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
نویسندگان
چکیده
As most afferent axons to the thalamus originate in the cerebral cortex, we assumed that the slow (< 1 Hz) cortical oscillation described in the two companion articles is reflected in reticular (RE) thalamic and thalamocortical cells. We hypothesized that the cortically generated slow rhythm would appear in the thalamus in conjunction with delta and spindle oscillations arising from intrinsic and network properties of thalamic neurons. Intracellular recordings have been obtained in anesthetized cats from RE (n = 51) and cortically projecting (n = 240) thalamic neurons. RE cells were physiologically identified by cortically evoked high-frequency spike bursts and depolarizing spindle oscillations. Thalamocortical cells were recognized by backfiring from appropriate neocortical areas, spindle-related cyclic IPSPs, and hyperpolarization-activated delta oscillation consisting of rhythmic low-threshold spikes (LTSs) alternating with afterhyperpolarizing potentials (AHPs). The slow rhythm (0.3-0.5 Hz) was recorded in 65% of RE neurons. In approximately 90% of oscillating cells, the rhythm consisted of prolonged depolarizations giving rise to trains of single action potentials. DC hyperpolarization increased the synaptic noise and, in a few cells, suppressed the long-lasting depolarizing phase of the slow rhythm, without blocking the fast EPSPs. In approximately 10% of oscillating neurons, the hyperpolarizing phase of the oscillation was much more pronounced, thus suggesting that the slow rhythm was produced by inhibitory sculpturing of the background firing. The slow oscillation was associated with faster rhythms (4-8 Hz) in the same RE neuron. The slow rhythm of RE neurons was closely related to EEG wave complexes recurring with the same frequency, and its strong dependency upon a synchronized state of cortical EEG was observed during shifts in EEG patterns at different levels of anesthesia. In 44% of thalamocortical cells the slow rhythm of depolarizing sequences was apparent and it could coexist with delta or spindle oscillations in the same neuron. The occurrence of the slowly recurring depolarizing envelopes was delayed by the hyperpolarizing spindle sequences or by the LTS-AHP sequences of delta oscillation. The hyperpolarization-activated delta potentials that tended to dampen after a few cycles were grouped in sequences recurring with the slow rhythm. We finally propose a unified scenario of the genesis of the three major sleep rhythms: slow, delta, and spindle oscillations.
منابع مشابه
Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks.
The synchronization of fast (mainly 30 to 40 Hz) oscillations in intrathalamic and thalamocortical (TC) networks of cat was studied under ketamine-xylazine anesthesia and in behaving animals by means of field potential, extra- and intracellular recordings from multiple sites in the thalamic reticular (RE) nucleus, dorsal (sensory, motor, and intralaminar) thalamic nuclei, and related neocortica...
متن کاملO23: Modulation of Pacemaker Channels and Rhythmic Thalamic Activity by Demyelination and Inflammatory Cytokines
The thalamus is a central element for the generation of rhythmic oscillatory activity under physiological and pathophysiological conditions. Especially slow oscillations in the delta and theta frequency band which normally occur during slow-wave sleep are associated with a number of neuropsychiatric conditions if they occur during wakefulness and may be the basis for the generation of character...
متن کاملCellular Mechanisms of the Slow (<1 Hz) Oscillation in Thalamocortical Neurons In Vitro
The slow (<1 Hz) rhythm is a defining feature of the electroencephalogram during sleep. Since cortical circuits can generate this rhythm in isolation, it is assumed that the accompanying slow oscillation in thalamocortical (TC) neurons is largely a passive reflection of neocortical activity. Here we show, however, that by activating the metabotropic glutamate receptor (mGluR), mGluR1a, cortical...
متن کاملIntrinsic and synaptic mechanisms of cortical active states generation during slow wave sleep
Without any sensory input cortical networks may display spontaneous transitions between silent (hyperpolarized) and active (depolarized) states. These transitions may be periodic as observed during slow-wave sleep or irregular as spontaneous burst generation found in the isolated neocortical slabs. In this paper we will review intrinsic and synaptic mechanisms mediating properties of spontaneou...
متن کاملThe thalamic low-threshold Ca2+ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks
During non-rapid eye movement sleep and certain types of anaesthesia, neurons in the neocortex and thalamus exhibit a distinctive slow (<1 Hz) oscillation that consists of alternating UP and DOWN membrane potential states and which correlates with a pronounced slow (<1 Hz) rhythm in the electroencephalogram. While several studies have claimed that the slow oscillation is generated exclusively i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 13 8 شماره
صفحات -
تاریخ انتشار 1993